

of Transportation National Highway Traffic Satety Administration

DOT HS 807 415 Technical Note

May 1989

The Accuracy of Evidential Breath Testers at Low BACs

This document is available to the public from the National Technical Information Service, Springfield, Virginia 22161.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear only because they are considered essential to the object of this report.

Technical Report Documentation Page

1. Report No.	2. Government Access	ion No.	3. Recipient's Catalog No	<u></u>
DOT HS 807 415				
4. Title and Subtitle	1		5. Report Date	
	Droath Master		J. Report Date	
The Accuracy of Evidentia Low BACs	al Breath Teste	rs at	6. Performing Organizatio	Code
It w BALS			PPA 834	
				Report No.
7. Author(s)				
James F. Frank and Arthu				
9. Performing Organization Name and Address Office of Driver and Pedestrian Research			10. Work Unit No. (TRAIS)
Research and Development National Highway Traffic		tration	11. Contract or Grant No.	
Washington, DC 20590			13. Type of Report and Pe	ried Covered
12. Sponsoring Agency Name and Address Office of Driver and Pede	turion D		Technical Note	
Research and Development	estrian Researc	n ,	1989	
National Highway Traffic	Safety Adminis	tration	14	
Washington, DC 20590			14. Sponsoring Agency Co	de
15. Supplementary Notes			· · ·	
The laboratory work for the	this project wa	s completed by	Dr. Arthur Flore	es and
Mr. Arnold Spicer of the	iransportation	Systems Cente	er, Cambridge, Mas	sachusetts.
16. Abstract	·····			
IO. ADSIGCT				
This Technical Note report				
evidential breath testers				S
indicated that these devi				
0.020-0.040% range as the				
against the NHTSA model s the field, the high quali				
contingent on their prope				.0
knowledgeable operators.				
		•		
17. Key Words		18. Distribution Stat	ement	
Alcohol, drunk driving,				
NIT FOR noverse		Document is	s available to the	e U.S. public
DUI, EBT performance, ev.	idential	through the	e National Technic	al Informatio
breath tester, highway a	idential	through the	s available to the National Technic pringfield, VA 22	al Informatic
- · ·	idential	through the	e National Technic	al Informatic
breath tester, highway a	idential	through the Service, Sp	e National Technic	al Informatic
breath tester, highway a breath tester	idential afety,	through the Service, Sp sif. (of this page)	e National Technic pringfield, VA 22	al Informatic 2161

.

.

.

.

1

.

.

. ·

THE ACCURACY OF EVIDENTIAL BREATH TESTERS AT LOW BACS

James F. Frank and Arthur L. Flores

Two recent research summaries (Transportation Research Board, 1987; Moskowitz and Robinson, 1988) conclude that alcohol levels below 0.050% may impair driving-related skills. This in turn has raised some concern among the police regarding the accuracy of their Evidential Breath Test (EBT) devices at these levels. The objective of the work reported on here was to provide information on the accuracy of EBTs at the BAC levels below 0.050%.

Method

Seven breath test devices meeting the NHISA Model Specifications for Evidential Breath Testers (NHISA, 1984a) were tested ten times at the following simulated BACs: 0.010%, 0.020%, 0.030%, 0.040%, and 0.100%. The units tested and their respective manufacturers are presented in Table 1.

	<u>T</u>	able 1	
Breath	Test	Units	Evaluated

<u>Model</u> (see Note 1)	Manufacturer
(in alphabetical order)	·

Alco-Sensor III

BAC Verifier

Intoxilyzer 4011AS-A

Intoxilyzer 5000

Intoximeter 3000

Lion Alcometer S-D2

Smith and Wesson Breathalyzer 2000 Intoximeters, Inc. St. Louis, MO Analytical Systems, Inc. East Hartford, CT CMI, Inc. (see Note 2) Owensboro, KY CMI, Inc. Owensboro, KY Intoximeters, Inc. St. Louis, MO Lion Laboratories (see Note 3) South Tlamorgen, England Smith & Wesson (see Note 4) Springfield, MA

Note 1: The Alco-Sensor III and the Lion Alcometer S-D2 are portable, handheld units that use a fuel cell technology. All of the other units use an infrared technology.

<u>Note 2</u>: CMI, Inc., formerly of Minturn, CO, has been purchased by MPD, Inc. of Owensboro, KY. They will continue to manufacture under the CMI label.

<u>Note 3</u>: This device is distributed in the USA by CMI, Inc.

<u>Note 4</u>: The breath testing subsidiary of Smith & Wesson was purchased by National Draiger, Inc. of Pittsburgh, PA. While the Smith & Wesson Breathalyzer 2000 is no longer manufactured, some of these devices are still in use in the field. Simulated alcohol vapor at the specified concentrations was created using a Smith & Wesson Mark IIA Calibrating Unit, which meets the requirements of the NHTSA model specifications for such units (NHTSA, 1984b).

Results and Discussion

The mean recorded BACs for the simulated BACs of 0.010%, 0.020%, 0.030%, 0.040%, and 0.100% for all seven evidential breath testers are presented in Table 2, while the raw data are presented in the Appendix. For reference, the NHISA model specifications call for evidential testers to perform within ± 0.005 % BAC (or ± 5 %, whichever is greater) when tested for ten trials each at BACs = 0.050%, 0.100%, and 0.150%. Based on our best estimates, these seven devices represent at least 60% of the units currently used by police to enforce drinking and driving laws.

All of the devices met the ± 0.005 % BAC accuracy requirements when tested at BACs greater than or equal to 0.030%, and six of seven tested devices also met those requirements at 0.020% BAC. Two devices gave readings between 0 and 0.005% when the simulator was set at BAC = 0.010%, suggesting that some devices may miss some samples at the 0.010% BAC level.

All of the models examined in this report were previously tested by NHTSA in the course of routine testing against the model specifications. As part of those tests, they were evaluated using non-alcoholic (i.e 0.00% BAC) samples. In all ten zero-BAC trials for each model tested, readings were 0.000% BAC, except the Alco-Sensor III, which gave ten consecutive readings of 0.001% BAC. It is reasonable to conclude that these devices do not produce false positive readings.

Parties interested in the accuracy and precision of evidential breath test devices at low BACs can be confident that they continue to perform with the same accuracy at BACs at and above 0.020% as when they were tested against the NHTSA guidelines at 0.050%, 0.100%, and 0.150% BACs. In the field, the high quality performance of evidential breath testers is contingent on their proper maintenance and use by trained and knowledgable operators.

<u>Table 2</u>

Evidential Testers	0.010	<u>Simulat</u> 0.020	<u>ed BACs</u> 0.030	0.040	0.100
Alco-Sensor III	0.011	0.021	0.030	0.040	0.099
BAC Verifier	0.003	0.014	0.025	0.035	0.101
Intoxilyzer 4011 AS-A	0.006	0.017	0.029	0.039	0.101
Intoxilyzer 5000	0.001	0.016	0.027	0.037	0.101
Intoximeter 3000	0.013	0.023	0.034	0.044	0.103
Lion Alcometer S-D2**	0.010	0.020	0.030	0.040	0.099
S & W Breathalyzer 2000	0.011	0.021	0.031	0.041	0.098

Performance of Seven Evidential Breath Testers at Low BACs.*

*Mean scores based on ten trials/condition.

0

**Manufacturer reports that this device is programmed so that the third digit reads either "5" or "0". All readings reflect that feature.

References

- Moskowitz, H. and Robinson, C. D. "Effects of Low Doses of Alcohol on Driving-related Skills: A Review of the Evidence." Washington, DC: U.S. Department of Transportation, NHTSA Technical Report No. DOT HS 807 280, July 1988.
- National Highway Traffic Safety Administration, "Model Specifications for Evidential Breath Testing Devices and Publication of a Conforming Products List." <u>Federal Register</u>, Vol. 49, No. 242, pages 48855-48864 (December 14, 1984a).
- National Highway Traffic Safety Administration, "Model Specifications for Calibrating Units for Breath Alcohol Testers and Publication of a Conforming Products List" <u>Federal Register</u>, Vol. 49, No. 242, pages 48865-48872 (December 14, 1984b).
- Transportation Research Board, <u>Zero Alcohol and Other Options. Limits for</u> <u>Truck and Eus Drivers</u>. Washington, DC: National Research Council, Special Report No. 216, 1987

Table 1

<u>Performance at Low BACs of the</u> <u>Alco-Sensor III</u> S/N B21682 Intoximeters, Inc. St. Louis, Missouri

Simulated BACs

Trial No.	0.100	0.040	0.030	0.02	0.010
1	.102	.041	.031	.021	.011
2	.100	.040	.031	.021	.011
3	.100	.040	.032	.021	.011
4	.100	.040	.030	.021	.011
5	.100	.041	.030	.021	.011
6	.098	.040	.030	.021	.011
7	.098	.040	.030	.021	.012
8	.098	.041	.029	.021	.011
9	.097	.040	.030	.021	.011
10	.096	.041	.030	.021	.011
Avg.	0.0989	0.0404	0.0303	0.0210	0.0111
SD	0.0018	0.0005	0.0008	0.0000	0.0003
systematic - 1.1% +1.0% +1.0% +5.0% +11.0% error					

.

3

• .

Individual trials separated by a 15 minute interval, as specified in the manufacturer's manual for users.

t

į

Table 2

Performance at Low BACs of the BAC Verifier (S/N 509241) Analytical Systems, Inc. East Hartford, CT.

Simulated BACs

Trial No.	0,100	0.040	0.030	0.020	0.010	
1	.101	.032	.024	.013	.003	
2	.099	.033	.025	.015	.003	
3	.101	.034	.024	.014	.003	
4	.101	.038	.025	.014	.003	
5	.103	.038	.025	.015	.004	
6	.101	.036	.026	.015	.003	
7,	.101	.035	.025	.013	.002	
8	.099	.035	.024	.015	.005	
9	.100	.035	.024	.014	.003	
10	.100	.036	.025	.014	.002	_
Avg.	0.1006	0.0352	0.0247	0.0142	0.0031	_
SD	0.0012	0.0019	0.0007	0.0008	0.0009	
systematic error	-0.6%	-12.0%	-17.7%	-29.0%	-69.0%	

Table 3

Performance at Low BACs of the <u>CMI Intoxilyzer 4011 A-SA</u> (S/N 94-001112) CMI,Inc. Owensboro, KY

Simulated BACs

Trial No.	0.100	0.040	0.030	0.020	0.010
1	.102	.039	.029	.014	.005
2	.101	.040	.028	.018	.006
3	.098	.040	.031	.017	.007
4	.102	.042	.025	.017	.004
5	.102	.038	.030	.015	.005
6	.102	.035	.030	.018	.004
6 7	.102	.039	.030	.016	.008
8	.102	.041	.028	.020	.007
9	.100	.039	.030	.015	.006
10	.102	.039	.027	<u>.018</u>	.005
Avg.	0.1013	0.0392	0.0288	0.0168	0.0057
SD	0.0013	0.0019	0.0018	0.0018	0.0013
systematic error	+1.3%	-2.0%	-4.0%	-16.0%	-43.0%

.

1

9

Table 4

Performance at Low BACs of the Intoxilyzer 5000 (S/N 64-001591) CMI, Inc. Owensboro, KY

Simulated BACs

<u>Trial No</u>	0.100	0.040	0.030	0.020	0.010
1	.100	.037	.026	.016	.007
2	.100	.037	.025	.017	.000
3	.101	.037	.029	.016	.000
4	.100	.037	.027	.018	.000
5	.101	.038	.026	.015	.000
6	.101	.037	.026	.015	.000
7	.102	.037	.027	.016	.000
8	.101	.038	.027	.014	.007
9	.100	.036	.027	.016	.000
10	.101	037	.026	015	000
Avg.	0.1007	0.0371	0.0266	0.0158	0.0014
SD	0.0007	0.0006	0.0011	0.0011	0.0030
systematic error	+0.7%	-7.3%	- 11.3%	-21.0%	-86.0%

Appendix

5

ł,

Table 5

Performance at Low BACs of the Intoximeter 3000 (S/N 4354) Intoximeters, Inc. St. Louis, MO

Simulated BACs

				•	
Trial No.	0.100	0.040	0.030	0.020	0.010
1	.103	.045	.035	.021	.013
2	.104	.043	.035	.024	.013
3	.103	.042	.035	.022	.013
4	.104	.044	.035	.023	.014
5	.103	.044	.033	.02 3	. 012
6	.102	.043	.034	.023	.013
7	.104	.044	.033	.023	.014
8	.102	.044	.034	.023	.013
9	.102	.043	.032	.023	.013
10	103	.043	<u>.033</u>	<u>023</u>	.013
Avg.	0.103	0.0435	0.0339	0.0228	0.0131
SD	0.0008	0.0008	0.0011	0.0008	0.0006
systematic	+3.0%	+8.8%	+13.0	+14.0%	+31.0%
error					

•

<u>Table 6</u>

Performance at Low BACs of the Lion Alcometer S-D2 S/N 024606 Lion Laboratories South Tlamorgan, England

Simulated BACs

Trial No.	0.100	0.040	0.030	0.020	0.010
1	.100	.040	.030	.020	.010
2	.100	.040	.030	.020	.010
3	.095	.040	.030	.020	.010
4	.100	.040	.030	.020	.010
5	.100	.040	.030	.020	.010
6	.100	.040	.030	.020	.010
7	.100	.040	.030	.020	.010
8	.100	.040	.030	.020	.010
9	.100	.040	.030	.020	.010
10	<u>100</u>	.040	030	020	010
Avg.	0.0995	0.0400	0.0300	0.0200	0.0100
SD	0.0016	0.0	0.0	0.0	0.0
systematic error	- 0.5%	0	0	0	0

Tests were run with 15 minute intervals between trials. This device is programmed so that the third digit of the readout is either "5" or "0", so that scores could only read 0.-5 or 0.-0.

Table 7

Performance at Low BACs of the Smith and Wesson Breathalyzer 2000 (S/N 20557) Springfield, Mass.

ĉ

3

Trial No.	0.100	0.040	0.030	0.020	0.010
1	.099	.040	.031	.021	.011
2	.099	.041	.031	.021	.011
3	.099	.041	.030	.021	.011
4	.098	.041	.030	.021	.011
5	.098	.041	.031	.021	.012
6	.098	.041	.031	.021	.011
7	.097	.041	.031	.021	.011
8	.096	.040	.031	.021	.011
9	.095	.041	.031	.020	.012
10	.097	040	030	.020	.011
Avg.	0.0976	0.0407	0.0307	0.0208	0.0112
SD	0.0013	0.0005	0.0005	0.0004	0.0004
systematic error	-2.4%	-1.8%	+2.3%	+4.0%	+12.0%

Simulated BACs